The Royal Astronomical Society expects to issue a number of press releases on the exciting research presented at the meeting. Embargoed copies will be made available to journalists several days in advance, to aid them in preparing their stories.
At the conference venue, a press room will be available for journalists to work in, along with a suitable space for interviews. RAS press office staff will be on hand to assist journalists e.g. in finding suitable scientists to comment on stories.
If you wish to take advantage of any of these services, or are interested in media coverage of the event, please contact This email address is being protected from spambots. You need JavaScript enabled to view it.
More information to follow...
A new model of the Sun’s solar cycle is producing unprecedentedly accurate predictions of irregularities within the Sun’s 11-year heartbeat. The model draws on dynamo effects in two layers of the Sun, one close to the surface and one deep within its convection zone. Predictions from the model suggest that solar activity will fall by 60 per cent during the 2030s to conditions last seen during the ‘mini ice age’ that began in 1645. Results will be presented today by Prof Valentina Zharkova at the National Astronomy Meeting in Llandudno.
It is 172 years since a scientist first spotted that the Sun’s activity varies over a cycle lasting around 10 to 12 years. But every cycle is a little different and none of the models of causes to date have fully explained fluctuations. Many solar physicists have put the cause of the solar cycle down to a dynamo caused by convecting fluid deep within the Sun. Now, Zharkova and her colleagues have found that adding a second dynamo, close to the surface, completes the picture with surprising accuracy.
“We found magnetic wave components appearing in pairs, originating in two different layers in the Sun’s interior. They both have a frequency of approximately 11 years, although this frequency is slightly different, and they are offset in time. Over the cycle, the waves fluctuate between the northern and southern hemispheres of the Sun. Combining both waves together and comparing to real data for the current solar cycle, we found that our predictions showed an accuracy of 97%,” said Zharkova.
Zharkova and her colleagues derived their model using a technique called ‘principal component analysis’ of the magnetic field observations from the Wilcox Solar Observatory in California. They examined three solar cycles-worth of magnetic field activity, covering the period from 1976-2008. In addition, they compared their predictions to average sunspot numbers, another strong marker of solar activity. All the predictions and observations were closely matched.
Looking ahead to the next solar cycles, the model predicts that the pair of waves become increasingly offset during Cycle 25, which peaks in 2022. During Cycle 26, which covers the decade from 2030-2040, the two waves will become exactly out of synch and this will cause a significant reduction in solar activity.
“In cycle 26, the two waves exactly mirror each other – peaking at the same time but in opposite hemispheres of the Sun. Their interaction will be disruptive, or they will nearly cancel each other. We predict that this will lead to the properties of a ‘Maunder minimum’,” said Zharkova. “Effectively, when the waves are approximately in phase, they can show strong interaction, or resonance, and we have strong solar activity. When they are out of phase, we have solar minimums. When there is full phase separation, we have the conditions last seen during the Maunder minimum, 370 years ago.”
Montage of images of solar activity between August 1991 and September 2001 taken by the Yohkoh Soft X-ray Telecope, showing variation in solar activity during a sunspot cycle. Credit: Yohkoh/ISAS/Lockheed-Martin/NAOJ/U. Tokyo/NASA
Comparison of three images over four years apart illustrates how the level of solar activity has risen from near minimum to near maximum in the Sun's 11-years solar cycle. Credit: SOHO/ESA/NASA
Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
This email address is being protected from spambots. You need JavaScript enabled to view it.
Ms Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr Sam Lindsay
Royal Astronomical Society
Mob: +44 (0)7957 566 861
This email address is being protected from spambots. You need JavaScript enabled to view it.
Prof Valentina Zharkova
Department of Mathematics and Information Sciences
Northumbria University
This email address is being protected from spambots. You need JavaScript enabled to view it.
The Royal Astronomical Society National Astronomy Meeting (NAM 2015) will take place at Venue Cymru in Llandudno, Wales, from 5-9 July. NAM 2015 will be held in conjunction with the annual meetings of the UK Solar Physics (UKSP) and Magnetosphere Ionosphere Solar-Terrestrial physics (MIST) groups. The conference is principally sponsored by the Royal Astronomical Society (RAS) and the Science and Technology Facilities Council (STFC). Follow the conference on Twitter
The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others. Follow the RAS on Twitter
The Science and Technology Facilities Council (STFC) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory. Follow STFC on Twitter
Royal Astronomical Society press release
RAS PR 15/47 (NAM 25)
8 July 2015
Earth-like planets orbiting other stars in the Milky Way are three times more likely to have the same type of minerals as Earth than astronomers had previously thought. In fact, conditions for making the building blocks of Earth-like rocks are ubiquitous throughout the Milky Way. The results of a new study of the chemical evolution of our galaxy are being presented today by Prof Brad Gibson, of the University of Hull, at the National Astronomy Meeting in Llandudno.
Minerals made from building blocks of carbon, oxygen, magnesium, and silicon are thought to control the landscape of rocky planets that form in solar systems around Sun-like stars. A subtle difference in mineralogy can have a big effect on plate tectonics, and heating and cooling of the planet’s surface, all of which can affect whether a planet is ultimately habitable. Until now, astronomers thought that rocky planets fell into three distinct groups: those with a similar set of building blocks to Earth, those that had a much richer concentration of carbon, and those that had significantly more silicon than magnesium.
“The ratio of elements on Earth has led to the chemical conditions ‘just right’ for life. Too much magnesium or too little silicon and your planet ends up having the wrong balance between minerals to form the type of rocks that make up the Earth’s crust,” said Gibson. “Too much carbon and your rocky planet might turn out to be more like the graphite in your pencil than the surface of a planet like the Earth.”
Gibson and team from the E.A. Milne Centre for Astrophysics at the University of Hull have constructed a sophisticated simulation of the chemical evolution of the Milky Way, which results in an accurate recreation of the Milky Way as we see it today. This has allowed them to zoom in and examine the chemistry of processes, such as planetary formation, in detail. Their findings came as something of a surprise.
“At first, I thought we’d got the model wrong!” explained Gibson. “As an overall representation of the Milky Way, everything was pretty much perfect. Everything was in the right place; the rates of stars forming and stars dying, individual elements and isotopes all matched observations of what the Milky Way is really like. But when we looked at planetary formation, every solar system we looked at had the same elemental building blocks as Earth, and not just one in three. We couldn’t find a fault with the model, so we went back and checked the observations. There we found some uncertainties that were causing the one-in-three result. Removing these, observations agreed with our predictions that the same elemental building blocks are found in every exoplanet system, wherever it is in the galaxy.”
The cloud out of which the solar system formed has approximately twice as many atoms of oxygen as carbon, and roughly five atoms of silicon for every six of magnesium. Observers trying to ascertain the chemical make-up of planetary systems have tended to look at large planets orbiting very bright stars, which can lead to uncertainties of 10 or 20 per cent. In addition, historically the spectra of oxygen and nickel have been hard to differentiate. Improvements in spectroscopy techniques have cleaned up the oxygen spectra, providing data that matches the Hull team’s estimates.
“Even with the right chemical building blocks, not every planet will be just like Earth, and conditions allowing for liquid water to exist on the surface are needed for habitability,” said Gibson. “We only need to look to Mars and Venus to see how differently terrestrial planets can evolve. However, if the building blocks are there, then it’s more likely that you will get Earth-like planets – and three times more likely than we’d previously thought.”
Rich spectrum of colours in the rocks around the Mutnovsky and Gorley volcanoes on the Kamchatka Peninsula. The mineralogy of rocks on Earth provide the chemical building blocks needed for life. Credit: Europlanet/A. Samper
In this artist's impression, gas and dust-the raw materials for making planets-swirl around a young star. The planets in our solar system formed from a similar disk of gas and dust captured by our sun. Credit: NASA/JPL-Caltech
Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
This email address is being protected from spambots. You need JavaScript enabled to view it.
Ms Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr Sam Lindsay
Royal Astronomical Society
Mob: +44 (0)7957 566 861
This email address is being protected from spambots. You need JavaScript enabled to view it.
Prof Brad Gibson
Director, E.A. Milne Centre for Astrophysics
University of Hull
This email address is being protected from spambots. You need JavaScript enabled to view it.
The research on the Galactic Terrestrial Zone has been carried out by Brad Gibson, Chris Jordan, Kate Pilkingon, Marco Pignatari at the E.A. Milne Centre for Astrophysics at the University of Hull.
The Royal Astronomical Society National Astronomy Meeting (NAM 2015) will take place at Venue Cymru in Llandudno, Wales, from 5-9 July. NAM 2015 will be held in conjunction with the annual meetings of the UK Solar Physics (UKSP) and Magnetosphere Ionosphere Solar-Terrestrial physics (MIST) groups. The conference is principally sponsored by the Royal Astronomical Society (RAS) and the Science and Technology Facilities Council (STFC). Follow the conference on Twitter
The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others. Follow the RAS on Twitter
The Science and Technology Facilities Council (STFC) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory. Follow STFC on Twitter
Royal Astronomical Society press release
RAS PR 15/45 (NAM 23)
7 July 2015
Cosmic microwave radiation points to invisible ‘dark matter’, marking the spot where jets of material travel at near light speed, according to an international team of astronomers. Lead author Rupert Allison of Oxford University presented their results yesterday (6 July) at the National Astronomy Meeting in Venue Cymru, Llandudno, Wales.
Currently, no one knows for sure what dark matter is made of, but it accounts for about 26% of the energy content of the Universe, with massive galaxies forming in dense regions of dark matter. Although invisible, dark matter shows up through its gravitational effect – a big blob of dark matter pulls in normal matter (like electrons, protons and neutrons) through its own gravity, eventually packing together to create stars and entire galaxies.
Many of the largest of these are ‘active’ galaxies with supermassive black holes in their cores. Some of the gas falling towards the black holes is ejected out as jets of particles and radiation. Observations made with radio telescopes show that these jets often stretch for millions of light years from their host galaxy – far larger in extent than the galaxy itself.
Scientists therefore expected that the jets would live in regions where there was an excess, higher-than-average concentration of dark matter. But since dark matter is invisible, testing this idea is not straightforward.
Einstein’s general theory of relativity describes how light feels the effect of gravitational fields, giving away the presence of dark matter through an effect known as ‘gravitational lensing’. Observing how dark matter distorts light allows astronomers to deduce its location and measure its mass.
The Universe also has an ideal reference map – the Cosmic Microwave Background (CMB) – covering the entire sky. This is a relic of the formation of the cosmos, and is a ‘snapshot’ of the universe as it was just 400,000 years after the Big Bang. The light from this epoch has taken more than 13 billion years to reach us.
Light coming from this very early time travels through most of the universe unimpeded. The lumpy dark matter, however, exerts a small gravitational tug on the light, deflecting it slightly from a straight-line path, rather like a lens does in a pair of glasses.
By analysing subtle distortions in the CMB, the team of Mr Allison, Dr Sam Lindsay (Oxford) and Dr Blake Sherwin (UC Berkeley) were able to locate dense regions of dark matter. As suspected, this is where the powerful radio jets are more common – a deep-lying correlation between the most massive galaxies today and the afterglow of the Big Bang.
Mr Allison commented: “Without dark matter, big galaxies wouldn’t have formed and supermassive black holes wouldn’t exist. And without black holes, we wouldn’t see intergalactic jets. So we have found another signature of how dark matter shapes today’s universe.”
The scientists now hope to use new instruments to improve their measurements and more clearly understand how radio jets and their host galaxies change over the history of the Universe. Future telescopes such as Advanced ACTPol and the Square Kilometre Array will provide the complementary data to make this hope a reality.
Active galaxy Hercules A, showing extensive radio jets (Image credit: NRAO)
Sample CMB lensing map (top) and radio overdensity map (bottom)
Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
This email address is being protected from spambots. You need JavaScript enabled to view it.
Ms Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr Sam Lindsay
Royal Astronomical Society
Mob: +44 (0) 7957 566 861
This email address is being protected from spambots. You need JavaScript enabled to view it.
Mr Rupert Allison
University of Oxford
This email address is being protected from spambots. You need JavaScript enabled to view it.
Original scientific publication:
http://mnras.oxfordjournals.org/content/451/1/5368.abstract?keytype=ref&ijkey=YB50kzkZn1z4ivG
http://arxiv.org/abs/1502.06456
The researchers are part of a collaboration of scientists working on the Atacama Cosmology Telescope high in the Atacama Desert in Northern Chile. They measured the lensing effect of dark matter on the Cosmic Microwave Background, and compared this to the positions of radio jets found using the Very Large Array radio telescope in New Mexico, USA.
The Royal Astronomical Society National Astronomy Meeting (NAM 2015) will take place at Venue Cymru in Llandudno, Wales, from 5-9 July. NAM 2015 will be held in conjunction with the annual meetings of the UK Solar Physics (UKSP) and Magnetosphere Ionosphere Solar-Terrestrial physics (MIST) groups. The conference is principally sponsored by the Royal Astronomical Society (RAS) and the Science and Technology Facilities Council (STFC). Follow the conference on Twitter
The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others. Follow the RAS on Twitter
The Science and Technology Facilities Council (STFC) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory. Follow STFC on Twitter
Royal Astronomical Society press release
RAS PR 15/34 (NAM 12)
7 July 2015
X-rays light up the surface of our Sun in a bouquet of colours in this new image containing data from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR. The high-energy X-rays seen by NuSTAR are shown in blue, while green represents lower-energy X-rays from the X-ray Telescope instrument on the Hinode spacecraft, named after the Japanese word for sunrise. The yellow and green colours show ultraviolet light from NASA's Solar Dynamics Observatory. Dr Iain Hannah, of the University of Glasgow, will present the image today at the National Astronomy Meeting in Llandudno.
NuSTAR usually spends its time examining the mysteries of black holes, supernovae and other high-energy objects in space. But it can also look closer to home to study our Sun.
"We can see a few active regions on the Sun in this view," said Hannah. "Our Sun is quietening down in its activity cycle, but still has a couple of years before it reaches a minimum."
Those active areas of the Sun are filled with flares, which are giant eruptions on the surface of the Sun that spew out charged particles and high-energy radiation. They occur when magnetic field lines become tangled and broken, and then reconnect. Due to its extreme sensitivity, NuSTAR’s telescope cannot view the larger flares. But it can help measure the energy of smaller microflares, which produce only one-millionth the energy of the larger flares.
NuSTAR may also be able to directly detect hypothesised nanoflares, which would be only one-billionth the energy of flares. Nanoflares -- which may help explain why the Sun's atmosphere, or corona, is so much hotter than expected -- would be hard to spot due to their small size. However, nanoflares may emit high-energy X-rays that NuSTAR has the sensitivity to detect. Astronomers suspect that these tiny flares, like their larger brethren, can send electrons flying at tremendous velocities. As the electrons zip around, they give off high-energy X-rays.
"We still need the Sun to quieten down more over the next few years to have the ability to detect these events," said Hannah, explaining that, while our Sun is approaching the tranquil end of its roughly 11-year activity cycle, it has been showing spurious bouts of high activity.
Astronomers are also excited to use NuSTAR's images of the Sun to pinpoint where energy from flares is released. While it is known that the energy is generally liberated in the upper solar atmosphere, the locations and detailed mechanisms are not precisely known.
Cosmologists are looking forward to using NuSTAR's solar observations, too. There is a slim chance the telescope could detect a hypothesised dark matter particle called the axion. Dark matter is a mysterious substance in our Universe that is about five times more abundant than the regular matter that makes up everyday objects and anything that gives off light. NuSTAR might be able to address this and other mysteries of the sun.
"What's great about NuSTAR is that the telescope is so versatile that we can hunt black holes millions of light-years away and we can also learn something fundamental about the star in our own backyard," said Brian Grefenstette of the California Institute of Technology in Pasadena, an astronomer on the NuSTAR team.
Flaring, active regions of our Sun are highlighted in this new image combining observations from several telescopes. High-energy X-rays from NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) are shown in blue; low-energy X-rays from Japan's Hinode spacecraft are green; and extreme ultraviolet light from NASA's Solar Dynamics Observatory (SDO) is yellow and red.
All three telescopes captured their solar images around the same time on April 29, 2015. The NuSTAR image is a mosaic made from combining smaller images.
The active regions across the Sun’s surface contain material heated to several millions of degrees. The blue-white areas showing the NuSTAR data pinpoint the most energetic spots. During the observations, microflares went off, which are smaller versions of the larger flares that also erupt from the sun's surface. The microflares rapidly release energy and heat the material in the active regions.
In this image, the NuSTAR data shows X-rays with energies between 2 and 6 kiloelectron volts; the Hinode data, which is from the X-ray Telescope instrument, has energies of 0.2 to 2.4 kiloelectron volts; and the Solar Dynamics Observatory data, taken using the Atmospheric Imaging Assembly instrument, shows extreme ultraviolet light with wavelengths of 171 and 193 Angstroms.
Note the green Hinode image frame edge does not extend as far as the SDO ultraviolet image, resulting in the green portion of the image being truncated on the right and left sides.
Image credit: NASA/JPL-Caltech/GSFC/JAXA
Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
This email address is being protected from spambots. You need JavaScript enabled to view it.
Ms Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr Sam Lindsay
Royal Astronomical Society
Mob: +44 (0)7957 566 861
This email address is being protected from spambots. You need JavaScript enabled to view it.
Whitney Clavin
Jet Propulsion Laboratory, Pasadena, California
818-354-4673
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr Iain Hannah
Royal Society Research Fellow,
Astronomy & Astrophysics Group
University of Glasgow
This email address is being protected from spambots. You need JavaScript enabled to view it.
NuSTAR is a Small Explorer mission led by Caltech and managed by NASA's Jet Propulsion Laboratory in Pasadena, California, for NASA's Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI), and was built by Orbital Sciences Corp., Dulles, Virginia. The spacecraft's mission operations center is at UC Berkeley, and the official data archive is at NASA's High Energy Astrophysics Science Archive Research Center, with ASI providing the mission's ground station and a mirror archive. JPL is managed by Caltech for NASA.
The Hinode mission is led by the Japanese Aerospace Exploration Agency, with participation from NASA and European partners.
The Royal Astronomical Society National Astronomy Meeting (NAM 2015) will take place at Venue Cymru in Llandudno, Wales, from 5-9 July. NAM 2015 will be held in conjunction with the annual meetings of the UK Solar Physics (UKSP) and Magnetosphere Ionosphere Solar-Terrestrial physics (MIST) groups. The conference is principally sponsored by the Royal Astronomical Society (RAS) and the Science and Technology Facilities Council (STFC). Follow the conference on Twitter
The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others. Follow the RAS on Twitter
The Science and Technology Facilities Council (STFC) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory. Follow STFC on Twitter
The University of Glasgow has been inspiring people to change the world for over 550 years and is a member of the prestigious Russell Group of leading UK research universities. As a world top 100 university with annual research income of more than £181m and overall student satisfaction rate of 91%, the University of Glasgow is committed to delivering world class research at the same time as the highest standards of teaching and education.
Royal Astronomical Society press release
RAS PR 15/32 (NAM 10)
7 July 2015
What are the mysterious dark matter and dark energy that seem to account for so much of our Universe? Why is the Universe expanding? For the past 30 years, most cosmologists have looked to the ‘standard model’ to answer these questions, and have had wide-ranging success in simulating formation in the universe and matching observational data. But not everything quite fits the predictions. Are these discrepancies down to the interpretation of observations, or is a more fundamental rethink required? On Tuesday 7th July, a special session at the National Astronomy Meeting (NAM) 2015 has been convened for astronomers to take stock of the evidence and stimulate further investigation of cosmology beyond the standard model.
The most popular candidate for the elusive particles that give the Universe extra mass is Cold Dark Matter (CDM). CDM particles are thought to move slowly compared to the speed of light and interact very weakly with electromagnetic radiation. However, no one has managed to detect CDM to date. Sownak Bose from Durham University’s Institute for Computational Cosmology (ICC) will present new predictions at NAM 2015 for a different candidate for dark matter, the sterile neutrino, which may have been detected recently.
“The neutrinos are sterile in that they interact even more weakly than ordinary neutrinos; their predominant interaction is via gravity,” explained Bose. “The key difference with CDM is that just after the Big Bang, sterile neutrinos would have had comparatively larger velocities than CDM and would thus have been able to move in random directions away from where they were born. Structures in the sterile neutrino model are smeared out, compared to CDM, and the abundance of structures on small scales is reduced. By modelling how the Universe has evolved from that starting point and looking at the distribution of present-day structures, such as dwarf-mass galaxies, we can test which model -- sterile neutrinos or CDM -- fits best with observations.”
Last year, two independent groups detected an unexplained emission line at X-ray wavelengths in clusters of galaxies using the Chandra and XMM-Newton X-ray telescopes. The energy of the line fits with predictions for the energies at which sterile neutrinos would decay over the lifetime of the Universe. Bose and colleagues from the ICC in Durham are using sophisticated models of galaxy formation to investigate whether sterile neutrino corresponding to such a signal could help zero-in on the true identity of dark matter.
“Our models show that a sterile neutrino with a mass corresponding to the signal detected would also be able to pass many current astrophysical tests of dark matter," said Bose. “We may have seen the first evidence for sterile neutrinos and this would be hugely exciting."
However, not everyone believes that extra mass from dark matter is needed to explain observations. Indranil Banik and colleagues at the University of St Andrews believe that a modified theory of gravity may be the answer. Banik and colleagues have constructed a detailed model predicting velocities of galaxies in the local group, which is dominated by the mass of our own Milky Way and the neighbouring Andromeda galaxy.
“On large scales, our Universe is expanding – galaxies further away are going away from us faster. But on local scales, the picture is more confusing,” said Banik. “We found that running our model in the context of Newtonian gravity did not match the observations very well. Some local group galaxies are travelling outwards so fast that it’s as if the Milky Way and Andromeda are exerting no gravitational pull at all!”
The St Andrews group suggests that these fast-moving outliers could be explained by a gravitational boost from a close encounter between the Milky Way and Andromeda about 9 billion years ago. The very fast motions of the two galaxies as they flew past each other, at around 600 kilometres per second, would have caused gravitational slingshot effects on other galaxies in the local group.
“This is like the trick spacecraft use to build up speed to reach the outer planets in our Solar System. Essentially, the big object – in this case the Milky Way or Andromeda – is slowed down slightly by the gravity from a passing object – the dwarf galaxy – which greatly speeds up as it's much lighter. This fits our observations – but not predictions with Newtonian gravity. This is just not strong enough to be compatible with such a close encounter between the Milky Way and Andromeda. Thus, we believe that our work favours a modified gravity theory and adds to a growing body of evidence from observations of galaxies,” said Banik.
The amount of dark energy in the Universe is also a matter of debate. The first evidence for dark energy – an energy field causing the expansion of the Universe to accelerate – came through measurements of Type Ia supernovae, which are used by astronomers as cosmic lighthouses to determine distances. However, there is now increasing evidence that Type Ia supernovae are not ‘standard candles’ and the precise brightness reached by these exploding white dwarf stars depends on the environment in the host galaxy. Now, Dr Heather Campbell and colleagues at the University of Cambridge have used the largest sample of supernovae and host galaxies to date to study the relation between host galaxy and supernova luminosity.
“Understanding the effect of the properties of the host is critical if astronomers are to make the most precise measurements possible of dark energy,” said Campbell. “More massive galaxies tend to have fainter supernovae. If the galaxy properties are not accounted for properly, then the amount of dark energy in the Universe is underestimated. This work is crucial for future telescopes and space missions such as LSST and Euclid, which will attempt to make precision measurements of the expansion of the Universe.”
The session convener, Prof Peter Coles said, “Although cosmology has made great progress in recent years, many questions remain unanswered and indeed many questions unasked. This meeting is a timely opportunity to look at some of the gaps in our current understanding and some of the ideas that are being put forward for how those gaps might be filled.”
Comparison of Cold Dark Matter (CDM) and sterile neutrino simulations of Milky Way-like dark matter haloes (the invisible “skeleton" within which the galaxy will actually form). The "Milky Way" would form somewhere near the centre (the yellowish bit), with its satellite galaxies distributed among the many of smaller haloes around it. On the left is a visualisation of the Milky Way environment in a Universe dominated by CDM; on the right is the same object seen in a sterile neutrino dark matter Universe. While there are thousands of satellite galaxies in the CDM model, their abundance is greatly reduced in the sterile neutrino case. The net result is a “smoother” halo in the sterile neutrino case, compared to the “lumpy” CDM one. The simulations were created at the Institute for Computational Cosmology in Durham as part of the Aquarius supercomputing project undertaken by the Virgo consortium.
Is this what the night sky looked like billions of years ago? Cosmologists from St Andrews think that the motion of outlying galaxies in the Local Group could be explained by a close encounter between the Milky Way and Andromeda 9 billion years ago. Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger
Type Ia supernovae, such as supernova 1994D in galaxy NGC 4526 (imaged here by the Hubble Space Telescope), are used as cosmic lighthouses by astronomers to measure distance in the Universe. A team from the University of Cambridge has used the largest sample of supernovae and host galaxies to date to study the relation between host galaxy and the precise brightness of the supernova. Credit: NASA/ESA, The Hubble Key Project Team and The High-Z Supernova Search Team
Dr Robert Massey
Royal Astronomical Society
Mob: +44 (0)794 124 8035
This email address is being protected from spambots. You need JavaScript enabled to view it.
Ms Anita Heward
Royal Astronomical Society
Mob: +44 (0)7756 034 243
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr Sam Lindsay
Royal Astronomical Society
Mob: +44 (0) 7957 566 861
This email address is being protected from spambots. You need JavaScript enabled to view it.
Mr Sownak Bose
Institute for Computational Cosmology
Durham University
This email address is being protected from spambots. You need JavaScript enabled to view it.
Dr Heather Campbell
Institute of Astronomy
University of Cambridge
This email address is being protected from spambots. You need JavaScript enabled to view it.
Mr Indranil Banik
School of Physics and Astronomy
University of St Andrews
This email address is being protected from spambots. You need JavaScript enabled to view it.
Prof Peter Coles
Head of School of Mathematical and Physical Sciences, Astronomy Centre
University of Sussex
This email address is being protected from spambots. You need JavaScript enabled to view it.
‘Dynamical History of the Local Group in LCDM’, Indranil Banik and Hongsheng Zhao. Submitted to Monthly Notices of the Royal Astronomical Society, June 2015
Did Andromeda crash into the Milky Way 10 billion years ago?
The Royal Astronomical Society National Astronomy Meeting (NAM 2015) will take place at Venue Cymru in Llandudno, Wales, from 5-9 July. NAM 2015 will be held in conjunction with the annual meetings of the UK Solar Physics (UKSP) and Magnetosphere Ionosphere Solar-Terrestrial physics (MIST) groups. The conference is principally sponsored by the Royal Astronomical Society (RAS) and the Science and Technology Facilities Council (STFC). Follow the conference on Twitter
The Royal Astronomical Society (RAS), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3800 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others. Follow the RAS on Twitter
The Science and Technology Facilities Council (STFC) is keeping the UK at the forefront of international science and tackling some of the most significant challenges facing society such as meeting our future energy needs, monitoring and understanding climate change, and global security. The Council has a broad science portfolio and works with the academic and industrial communities to share its expertise in materials science, space and ground-based astronomy technologies, laser science, microelectronics, wafer scale manufacturing, particle and nuclear physics, alternative energy production, radio communications and radar. It enables UK researchers to access leading international science facilities for example in the area of astronomy, the European Southern Observatory. Follow STFC on Twitter
About Durham University
• The Durham astronomy group, including the Centre for Extragalactic Astronomy, as well as the Institute for Computational Cosmology, is one of the leading research centres in the world and was ranked first in Europe and 6th in the world based on impact in the Space Sciences.
• A world top 100 university with a global reputation and performance in research and education
• A member of the Russell Group of leading research-intensive UK universities
• Research at Durham shapes local, national and international agendas, and directly informs the teaching of our students
• Ranked in the world’s top 100 universities for reputation (Times Higher Education World Reputation Review rankings 2015).
• Ranked in the world top 25 for the employability of its students by blue-chip companies world-wide (QS World University Rankings 2014/15)
• In the global top 50 for Arts and Humanities (THE World University Rankings 2013/14)
• In the 2016 Complete University Guide, Durham was ranked fifth in the UK.
Durham was named as The Times and Sunday Times 'Sports University of the Year 2015' in recognition of outstanding performance in both the research and teaching of sport, and student and community participation in sport at all levels.
© 2025 Royal Astronomical Society